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Abstract 

 

The new versions of the EN 1993-1-1 (EC3-1-1) and the EN 1993-1-5 (EC3-1-5) standards 

have introduced the general method designing beam-column structures; see [1] and [2]. The 

design method requires 3D geometric model and finite element analysis. In a series of papers 

we present this general design approach. The parts of the series are the following:   

 Part 0:  An explanatory introduction 

 Part 1:  3D model based analysis using general beam-column FEM 

 Part 2:  Resistances of cross-sections using generalized cross-sectional models 

 Part 3:  Resistances of structural members using general method 

 Part 4:  Special issues of the 3D model based design method 

 

Present paper deals with the general beam-column finite element analysis which is the 

fundamental tool of the general design approach are specified in the Eurocode 3.    

 

1. The general beam-column finite element 

 

1.1 Degrees of freedom and internal forces 

 

In design practice more types of finite elements are used. The beam-column type element is 

axially compressed and bended around the strong or/and about the weak axes of the cross-

section. The element is general if the following conditions are met: 

 the shape of the cross-section is arbitrary (open or closed) 

 the walls of the cross-section are relatively thin (thin-walled cross-section)  

 the equilibrium equations are geometrically nonlinear and contain the warping effect 

(Wagner effect)  

The above conditions are satisfied by Rajasekaran’s element [3] which has 14 degrees of 

freedom. Fig.1 shows the local system and the stress resultants of the element. The u axis 

coincides to the centroid, while the v and w axes are the strong and the weak axes of the 

cross-section, respectively. The stress resultants at the j and k ends of the element are denoted 

as: 

N       axial force 

wv T ,T    shear forces 

wv M ,M   bending moments 

uM     torsional moment 

B       bimoment 

It can be seen that the normal force and the bending moments are considered in the centroid 

while the shear forces, the torsional moment and the bimoment in the shear centre of the 

cross-section.  



 
Fig. 1.   Location of the stress resultants of the general beam-column finite element 

 

However, the displacements and the stress resultants can be written in vector form: 

 

 kuu,kw,kv,ku,kkkjuu,jw,jv,ju,jjj      w vu        w vuu         (1) 

 

  B M M M T T N   B M M M T T Nf kkw,kv,ku,kw,kv,kjjw,jv,ju,jw,jv,j      (2) 

 

 

1.2 The matrix equilibrium equation 

 

Rajasekaran [1] derived the matrix equilibrium equation of the general element in explicit 

form,   
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where 
s

K is the flexural and
g

K is the geometric stiffness matrix. The stiffness matrices were 

derived from the virtual work equation of the element: 
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In Eq. (4) the left hand side expresses the work of the internal stress on the appropriate virtual 

strain, while the right hand side expresses the work of the surface forces on the appropriate 

virtual displacements. At left hand side l denotes the length of the element, t is the appropriate 

wall thickness and s is the tangent coordinate. Furthermore, u  is the normal stress and 

 is the corresponding virtual normal strain, vu and wu are the components of shearing stress 

and vu and wu are the corresponding virtual shearing strains at an arbitrary point on the 
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counter of the element. The index d at right hand side denotes the degrees of freedom of the 

nodes, as it is given in Eq. (1). However, the 
s

K flexural stiffness matrix is expressed in terms 

of the geometrical properties of the element, while 
g

K is expressed in terms of the actual 

stress resultants such as  

 

N    axial force 

wv T ,T   shear forces               (5) 

wv M ,M   bending moments 

 

Furthermore, the geometric stiffness matrix depends on the Wagner coefficient which can be 

written in the following general form: 

 

 
s

2 tdsaK                   (6) 

where a is the distance of the counter point of the cross-section to the shear centre. The details 

can be found for example in [3]. 

  

 

1.3 The special capabilities of the general element 

 

The geometric stiffness matrix of the traditional 12 DOF element takes the effect of the axial 

force on the bending moments, but neglects the following effects: 

 

 interaction between the bending and torsional moments 

 effect of the axial stress resultant on the torsion (Wagner effect) 

 

The 14 DOF general beam-column element is geometrically nonlinear (second order) and can 

take the above effects into consideration. However the general element is appropriate to 

compute the torsional behavior following Vlasov’s theory. Practically, by this element we can 

compute the warping effect as well as the flexural, the torsional and the lateral torsional 

buckling modes, furthermore any interactions of these buckling modes.      

 

 

2. Analysis of simply supported structural members   

 

2.1 Compatibility condition for warping 

 

The compatibility of warping may be ensured by the following condition at any node of the 

finite element model of any structural member (see Fig. 2): 
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                  (7) 

 



 
Fig. 2.  Compatibility condition for warping at the joints of the general finite element model 

 

Eq. (7) ensures that the sum of the bimoments (Bi) in the joints will be zero. If the cross-

section is uniform and the member is straight, the method gives exact solution.  

 

2.2 Modeling  

 

The second order stress analysis and the global stability analysis which includes lateral 

torsional buckling of uniform structural members can be evaluated by a simple model which 

contains 4 to 8 general beam-column finite elements (Fig. 3). At any node of the model there 

are 7 degrees of freedom. The 7
th

 degree theoretically means the speed of the torsional 

deflection of the reference axis. However, any degree of the model may be restrained. 

Basically the 7
th

 degrees (warping) of the model supports can be restrained (θuu=0) or can be 

free as normally. The support model of the simply supported 3D member is defined in Table 

1.  

 

  
Fig. 3.  The FE model of the simple supported member 

 
member end degrees of freedom 

u v w θu θv θw θuu 

left fix fix fix fix free free free 

right  free fix fix fix free free free 

 

Tab. 1.  Support model of the simple supported structural member (see Fig. 3)   

 

Element 1 

Element 2 

B1 

B2 

B1 + B2 = 0 

Lower end (j) 

Greater end (k) 



2.3 Examples 

 

The properties of a simply supported structural member are the following: 

- length:    6.000 mm 

- cross-section:  welded I section (flanges: 200-12; web plate: 412-8) 

- elastic moduli:  210.000 N/mm
2
 

First, let us compute the displacements and the stress resultants of the member which is 

loaded by concentrated torsional moment and uniform compressive force (Example 1). 

Secondly, let us compute the critical load amplifier os the member which is loaded by 

concentrated transverse force and uniform compressive force (Example 2). Let us analyze the 

models with the ConSteel 4.0 software [4] which uses the Rajasekaran’s general beam-

column element which was described in Section 1 of this paper. We will denote this element 

as Beam7. Normally, any structural member into will be distributed into eight finite elements. 

We will verify the analysis with independent shell finite element method where we will use a 

geometrically nonlinear triangular shell element with 3 nodes. We will denote this element as 

Shell3. However, we will use end stiffeners in the models to avoid local buckling as well as 

distorsion. We will use 2 mm thick end plates which have negligible effect on the analysis. 

 

2.3.1 Example 1: Stress analysis       

 

The load model has two components: 5 kN concentrated torsional moment at the middle 

cross-section and 300 kN compressive axial force at the right end of the member (Fig. 4). The 

specific results of the analysis which was carried out on the Beam7 model are shown in Tab. 

2. We analyzed the structural member using Shell3 FE model. The appropriate results are 

shown in the Tab. 2.      

 
Figure 4  Beam7 finite element model of the simply supported member loaded by torsion 

moment and compressive force  

 
  analysis  results at middle cross-section 

  θu (deg)   B (kNm
2
) σω (N/mm

2
)   ∑σu,max (N/mm2) 

1
st 

order 

  - Beam7 

  - Shell3 

 

5,843 

5,854 

 

5,040 

- 

 

157,5 

- 

 

197,1 

196,1 

2
nd 

order 

  - Beam7 

  - Shell3 

 

6,884 

6,942 

 

5,720 

- 

 

178,7 

- 

 

218,3 

218,0 

 

Table 2  Specific results of the stress analysis 

 



 

2.3.2 Example 2: Global stability analysis  

 

We examine the same structural member defined in Example 1, but the load model now 

consists of 100 kN concentrated load at the middle of the member and 300 kN compressive 

axial force (Fig. 5). The global stability analysis supplies the critical load amplifier and the 

appropriate buckling mode of the member (Fig. 6). Tab. 3 shows the computed critical load 

amplifiers which were compueted on the general beam-column FE model and on the shell FE 

modell (Fig.7).    

 

 
Fig. 5.  Beam7 finite element model of the simply supported member loaded by transverse 

force and uniform compressive force  

 

 
Fig. 6.  Global stability analysis by Beam7 model  (αcr=1,42) 

 
Fig. 7.  Global stability analysis by Shell3 model  (αcr=1,40) 

 
FE method critical load amplifier (αcr) 

Beam7 1,42 

Shell3 1,40 

 

Tab. 3. The computed critical load amplifier 



3. Analysis of irregular structural members 

 

In Section 2 we have shown that the general beam-column FE method is a very sufficient tool 

for geometrically nonlinear stress and global stability analysis of uniform structural members. 

In this Section we will show that this tool is also sufficient in analysis of members with 

mono-symmetric cross-section (Example 3) and/or with tapered web (Example 4). 

 

3.1 Example 3: Global stability analysis of members with mono-symmetric I section 

 

The efficiency of the general beam-column FE method may be demonstrated by the global 

stability analysis of a simply supported mono-symmetric I beam published by Mohri et. al. in 

[5]. They computed the critical moment with theoretically improved and numerical (Abaqus) 

methods. Fig. 8 shows the Beam7 model of their benchmark example where the mono-

symmetric I section has 150/75-10,3 flanges and 289,3-7,1 web plate (basically it is the 

simplified cross-sectional model of the IPE300 shape). Fig. 9 shows the lateral torsional 

buckling mode of the model. Tab. 4 shows Mohri’s solutions and the numerical solutions 

given by the general beam-column FE method.   

 
 

Fig. 8.  The Beam7 model of the Mohri’s mono-symmetric I beam 

 (L=6.000 mm; load is in the shear centre; E=210.000 N/mm
2
) 

 

 

 
 

Fig. 9.  Lateral torsional buckling mode of the mono-symmetric I beam 

 

 

 



method Critical moment (kNm) 

down load up load 

improved theory * 77,48 54,65 

numerical (Abaqus) ** 77,41 53,99 

numerical (ConSteel) *** 77,98 53,83 
   * improved theoretical solution by Mohri et.al. [7] 

   ** numerical solution by Mohri et.al. using the S8R5 shell element of the ABAQUS software [7] 

   *** using the Rajasekaran’s general beam-column FE [8]   

 

Tab. 4.   Critical moments of the Mohri’s benchmark beam computed  

by different methods 

 

 

3.3 Example 4: Global stability analysis of tapered structural members 

 

The flanges of the tapered member are made of 200-12 plates, the web is made of 588/188-8 

plate and the length of the member is 6000 mm. The simply supported member is loaded by 

200 kNm concentrated bending moment in the plane of the symmetry and by 100 kN uniform 

compressive force. The member is modeled with 8 uniform general beam-column elements 

(Fig. 10). The hight of the element is equal to lower hight of the segment. The critical load 

amplifier and the buckling mode was computed as 1,84 (Fig. 11). We computed the critical 

load amplifier with Shell3 FE method (Fig. 12) also. This method gives 2,03 critical load 

amplifier (Tab. 5).    

 

 
Fig. 10.  The Beam7 model of tapered beam 

 (L=6000 mm; normal force is in the centroid; E=210.000 N/mm
2
) 

 
Fig. 11.  Lateral torsional buckling mode of the tapered I beam (αcr=1,84) 

 

tapered segment 

uniform finite element uniform element 



 
Fig. 12.  Buckling mode of the member given by the Shell3 FE element method (αcr=2,03) 

 

 
method critical load amplifier 

Beam7 (general beam-column FE with 8 elements) 1,84 

Shell3  (25 mm) 2,03 

Tab. 5.   Critical load amplifiers for the tapered models    

 

 

4. Analysis of complex structures 

 

4.1 Special modeling problems 

 

4.1.1 Transmission of warping  

 

In a more complex structure (ex. frame) the structural members located at a node are on 

different reference axes (ex. beam-column joint). However, for these nodes the law for the 

transmission of warping is sophisticated, furthermore, within the beam theory, it is unknown. 

In order to use the general beam-column FE method for analysis of more complex structures 

we may apply the simple condition given by Eq. (7). Example 5 shows that this simple 

condition for warping gives acceptable analysis if the structural joints are closely rigid.  

 

4.1.2 Load eccentricity 

 

The location of the external forces within the cross-section may drastically influence the 

critical load amplifier. The general beam-column finite element was derived with the essential 

assumption that the shear forces are in the shear centre. Consequently, in the initial state of 

the model the external forces are in the shear centre. To take the load eccentricity into 

consideration we can connect the loading point and the shear centre with a fictive element 

(Fig. 13). The fictive element is a special and automatically generated finite element which is 

stiff enough to transmit the effects of the external forces except the warping. Example 6 

illustrates the efficiency of the modeling of load eccentricity using fictive element.    

 

4.1.3 Eccentric elements 

 

The finite element is eccentric if the centroid is out of its reference axis. The eccentricity may 

be taken into consideration in the geometric transformation matrix of the element. The 

consequence of the eccentricity is the additional bending moments due to the axial force (Fig. 

14) and the external torsional moment due to the transverse external forces (Fig. 15). 



Example 7 illustrates how to use the eccentric element to mode top or bottom steel tapered I 

members.   

 
Fig. 14.  Axial force effect on the eccentric element  

 

 
Fig. 15.  Transverse force effect on the eccentric element  

 

4.2 Examples 

 

4.2.1 Example 5: Global stability analysis of frames 

 

Fig. 16 shows the general beam-column FE model of a simple frame where the beam-to-

column joints are continuous in stiffness (moment resistance beam-to-column joints). The 

frame is supported in the transverse direction at middle and at top of the columns. The frame 

is load by 100 kN concentrated force at the middle of the beam. Let us compute the critical 

load amplifier of the frame using the general beam-column FE method and the simplified 

warping condition given by Eq. (7). As a controlling, we used Shell3 FE model with different 

structural solutions for the beam-to-column joints (from semi-rigid joints to rigid joints).  

Tab. 6 shows the critical load amplifiers which were computed by different FE methods 

applying different joint configurations. However, we can take the following conclusions: 

 the critical load amplifier depends on the type of the beam-to-column joint configuration 

 the result of the general beam-column Fe method is close to the result of the shell FE 

method if the beam-to-column joint is stiffened (rigid).  

 

centroid 

reference axis 

e 

reference axis 

e 



 
Fig. 16.   The Beam7 model of the simple frame structure (span:8000 mm; hieght: 4000 

mm;flanges:200-12; web plate:388-8; E=210.000 N/mm
2
))  

 

 

4.2.2 Example 6: LTB analysis of a double symmetric beam with an eccentric load 

 

The efficiency of the modeling with general beam-column FE may be illustrated by the global 

stability analysis of the simply supported symmetric I beam published by Mohri et. al. in [5]. 

They solved the problem with theoretically improved and numerical methods (Abaqus). The 

symmetric I section has 150-10,3 flanges and 289,3-7,1 web plate (simplified cross-sectional 

model of the IPE300 shape). We analyzed this beam by the ConSteel software. We used 

effective element to model the load eccentricity in case of top and down flange loading. The 

Beam7 model is illustrated in Fig. 17. We compared the computed critical moments in the 

Tab. 7.  

 
   

Fig. 17  General beam-column model of the Mohri’s beam with top flange down load  

 (E=210.000 N/mm
2
; length: 6.000 mm; ) 

 

fictive element 



beam-to-column joint model buckling mode critical load amplifier (αcr) 

Beam7 FE model 

continuous   

 

 

 

2,66 

continuous but free 

warping  

 

 

 

 

1,94 
 

Shell3 FE model 

unstiffened 

 
 

 

 

 

1,38 

partially stiffened (A) 

 
 

 

 

 

 

2,12 

partially stiffened (B) 

 
 

 

 

 

2,10 

stiffened (C) 

  

 

 

 

2,54 

Table 6  The critical load amplifiers which were computed by different FE methods and by 

different joint configurations 



Solution Critical moment (kNm) 

shear centre top down 

Mohri et.al. (2003) 

   - Abaqus B31OS (Beam7) 

   - Abaqus S8R5 (Shell) 

 

112,95 

- 

 

79,74 

78,45 

 

159,05 

156,57 

ConSteel (Beam7) 113,39 80,09 159,53 

Tab. 7.  Critical moments for the Mohri’s beam computed 

 by different methods 

 

 

4.2.3 Example 7: Modeling of tapered frame structure 

 

The span of the symmetric tapered frame is 12.000 mm (between the reference axes of the 

columns) and the angle of roof is 10 degree. The cross-section at the column base and at the 

beam-to-beam connection is the same (welded I section with 200-12 flanges and 188/588-8 

web plate). The 10 kN/m vertical load is distributed on the reference axes of the beams. Fig. 

18 shows the Beam7 model of the structure. Fig. 19 shows the buckling mode of the frame 

where the critical load amplifier is 7,06. Fig. 20 shows the buckling mode of the appropriate 

shell finite element model where the critical load amplifier is 6,36. The shell model contains 

12 mm thick base plates and web stiffeners in the beam-to-column and in the beam-to-beam 

joints. Tab. 8 shows the specific results of the analysis using different models. 

 
Fig. 18. The Beam7 model of the tapered frame 

 
Fig. 19. The buckling mode of the Beam7 model (αcr=7,06) 



 

     
 

Fig. 20. The buckling mode of the Shell3 model (αcr=6,36) with web stiffeners in the beam-to-

column joint 

 
method deflection at top of the 

frame (mm) 

critical load amplifier 

Beam7  14,48 7,06 

Shell3  (50 mm) 

   - web stiffeners (a) 

   - web and shear stiffeners (b) 

 

12,64 

12,17 

 

6,52 

9,66 

Tab. 8.   Specific results of the analysis with different models     

 

 

5. Conclusions 

 

A general beam-column finite element was presented in Section 1. The analysis based on this 

element provides general elastic second order stress resultants (see Section 2 and Section 3). 

These stress resultants are required for a comprehensive evaluation of the resistances of any 

arbitrary cross-section of regular and irregular structural members. The global elastic stability 

analysis based on this method provides the critical load amplifier which is an essential 

parameter in the general method for resistances of in-plane structural members and structures 

(Section 4). The method is allowed when the dominant buckling mode is the lateral torsional 

buckling or the interaction of flexural buckling and lateral torsional buckling. The method 

may be sufficiently used for irregular structural members and cross-sections (see Section 4). 

In this paper we used the ConSteel 4.0 structural design software to illustrate the efficiency of 

the general design method using general beam-column finite element analysis.     
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