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Abstract

After introducing the Eurocode standards several theses have

been published on the now much-discussed phenomenon of

lateral-torsional buckling of steel structural elements under

pure bending. According that, researchers are working on the

development of such new design methods which can solve the

problems of the design formulae given by the EN 1993-1-1. This

paper gives a detailed review on the proposals for novel hand

calculation procedures for the prediction of LT buckling resis-

tance of beams. Nowadays, the application of structural de-

sign softwares in practical engineering becomes more common

and widespread. Recognizing this growing interest, the main

objective of our research work is the development of a novel,

computer-aided design method. In this paper the details of a

general type stability design procedure for the determination of

the LT buckling resistance of members under pure bending are

introduced. Here, the theoretical basis of the proposed method

is clarified, the calculation procedure is detailed and some re-

sults for the evaluation of the appropriateness of the method is

also presented. Based on the evaluations it can be stated that

the new, general type design method is properly accurate and

has several advantages on the stability check of beams under

bending.
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1 Introduction

During the analysis of steel structures the determination of

the stability resistance is one of the most significant verification

since usually the loss of stability is the governing problem. For

these complex mechanical behaviors the Eurocode standards en-

deavor to give simplified methods to make the design process

easier. However, after the introduction of the EN version of

Eurocodes the design of steel members against lateral-torsional

buckling became one of the most controversial topic. Accord-

ing to the given standard design procedures many theses have

been published on the problems and open questions. Recog-

nizing the need for an appropriate stability design method sev-

eral researches are dealing with the problem of lateral-torsional

buckling of beams. Naumes et al. proposed a "general method"

for assessing the out-of-plane stability of members based on the

determination of the critical cross-section in [8]. However, the

presentation of the widespread validation of the method is still

needed. For the clarification of the theoretical background of the

lateral-torsional buckling behavior Szalai and Papp determined

the Ayrton-Perry type resistance formulae for simple beams un-

der pure bending and also for beam-columns in [4]. Afterwards,

Taras et al. published a similar, Ayrton-Perry type solution for

the case of simple beams and proposed a calculation proce-

dure for the prediction of lateral-torsional buckling resistance of

members subjected to bending in [11]. According to the modern

intentions we started a new research work for the development

of a computer-aided and general stability design method, which

is based on the generalized Ayrton-Perry formulae published in

[4]. In this paper a novel method is proposed which reduces the

stability problem to evaluation of cross-sectional problem us-

ing in structural design software. The method is appropriate to

predict the behavior of the beams under bending with arbitrary

moment distributions and boundary conditions.

2 Eurocode methods for LT buckling of beams

In the 1960’s an extensive test program was carried out with

both laboratory and numerical deterministic tests as well as

Monte-Carlo evaluation on steel members subjected to bending.

As the results of these investigations the lateral-torsional (LT)
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buckling curves belonging to the different cross-sections were

determined. Then, the numerical confirmation and theoretical

verification of these curves began. Similarly as in the case of

the flexural buckling of columns the Ayrton-Perry type solution

[1] was chosen for the description. The determination of these

formulae for columns resulted in simple equations which can

be properly applied through design methods, see in [2] and [3].

However, due to the complexity of the LT buckling type prob-

lems the researchers got much more intricate solution for the

case of beams. Namely, the derived formulae were too com-

plicated for calculation procedures and they were unfit for stan-

dard applications [4]. In lack of the proper determination of the

mechanical background of this behavior the researchers started

to calibrate the original, flexural buckling based Ayrton-Perry

formula for LT buckling of beams. Finally, the design param-

eters of the column design procedure were fitted to the resis-

tance curves of the members in bending. This is the reason

why EN1993 Part 1-1 (EC3-1-1) standard uses the same mul-

tiple buckling curves for the determination of the stability resis-

tance of columns and beams as well [5].

At present, the Eurocode standards give two alternative meth-

ods for the stability design of beams under bending. The de-

signer can choose the applied procedure with regard to the spec-

ifications of the National Annexes. These alternative methods

define the Mb,Rd standardized LT buckling resistance in the same

way. The calculation for the case of beams with compact sec-

tions of class 1 or 2 is:

Mb,Rd = χLT ·Wpl,y · fy/γM1 (1)

where χLT is the reduction factor for LT buckling, Wpl,y is

the strong axis sectional modulus, fy is the yield strength of the

material and γM1 is the partial factor for stability checks. The

two given alternative methods differ in the calculation proce-

dure of the χLT reduction factor. One of them is the ‘General

Case’ procedure, which was already included in the ENV ver-

sion of the standards. This method applies analogue formulae

for the LT buckling of beams as the formulae given for the flex-

ural buckling of columns. Only the parameters are derived for

the behavior of members subjected to bending. According to the

EC3-1-1 Part 6.3.2.2 ‘General Case’ procedure the form of the

LT buckling curves:

χLT =
1

φLT +

√
φ2

LT
− λ̄2

LT

≤ 1, 0 (2)

where the φLT factor and the λLT slenderness for LT buckling

can be determined through the following equations:

φLT = 0, 5 ·
[
1 + ηLT + λ̄2

LT

]
=

= 0, 5 ·
[
1 + αLT ·

(
λ̄LT − 0, 2

)
+ λ̄2

LT

] (3)

λ̄LT =

√
Wpl,y · fy/Mcr (4)

In Eq. (3) the ηLT is the imperfection factor for LT buckling

whose calibrated form is ηLT = αLT ·
(
λLT − 0, 2

)
with αLT

imperfection constant. In Eq. (4) Mcr is the elastic critical bend-

ing moment. The most important remarks on the ‘General Case’

method:

• this standard procedure takes into account the type of the

bending moment distribution (thereby the load distribution

and boundary conditions) of the beam only in the determi-

nation of the slenderness;

• regarding the calibrated form of ηLT imperfection factor it can

be stated that the standard specifies reduction for LT buckling

only for beams with λLT > 0,2 slenderness, i.e. the LT buck-

ling curves have a plateau length under λLT = 0,2;

• according to the given tables for the standardized values of

αLT constant it can be seen that the EC3-1-1 applies the same

LT buckling curve for a group of different profiles and it does

not make a distinction between them regarding their behavior

and resistance.

The other procedure for the design of beams for LT buck-

ling is the ‘Special Case’ method. The possibility of choosing

this alternative option is one of the most significant changes

of Eurocode 3 during the conversion from ENV to EN status

[6]. This new method can be applied only for beams with hot-

rolled and equivalent welded I profiles. Compared to the original

procedure the standardized LT buckling curves are considerably

changed. The formula for the determination of the χLT reduction

factor in the EC3-1-1 Part 6.3.2.3 ‘Special Case’ method is:

χLT =
1

φLT +

√
φ2

LT
− β · λ̄2

LT

≤ min

1, 0 ;
1

λ̄2
LT

 (5)

where the definition of the λLT slenderness is the same as it is

written by Eq. (4), and for the calculation of the φLT factor the

following expression can be used:

φLT = 0, 5 ·
[
1 + αLT ·

(
λ̄LT − λ̄LT,0

)
+ β · λ̄2

LT

]
(6)

Considering Eq. (5) and Eq. (6) it can be established that the

original, ‘General Case’ shape of the LT buckling curves is mod-

ified through the application of the β and λLT,0 parameters. Fur-

thermore, the given values are also changed for the αLT imper-

fection constant belonging to the separated groups of profiles.

This also causes differences in the calculated values of the LT

buckling resistance. The EC3-1-1 allows to calculate with 0,4

as the maximum value of the λLT,0 plateau. Therefore, design-

ers do not have to count with reduction for LT buckling in the

λLT < 0, 4 slenderness range. The standards recommend for

choosing the β with minimum value of 0,75. The values of β

and λLT,0 parameters are established in the National Annexes.

Beside the modified shape of the LT buckling curves the new,

‘Special Case’ method contains another important change re-

garding the original, ‘General Case’ procedure. This difference
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is that the type of the bending moment distribution of the exam-

ined beam is taken into account not only through the determi-

nation of the slenderness but in the calculation of the reduction

factor also. To this, the EC3-1-1 defines a modifier f factor

which carries the effect of the load distribution. Finally, using

the f factor the LT buckling resistance of the examined member

can be calculated with the following equations:

Mb,Rd = χLT, mod ·Wpl,y · fy/γM1 =
χLT

f
·Wpl,y · fy/γM1 (7)

where the f factor:

f = 1 − 0, 5 · (1 − kc) ·

[
1 − 2 ·

(
λ̄LT − 0, 8

)2
]
≤ 1, 0 (8)

In Eq. (8) kc is a correction factor whose value depends on the

bending moment distribution. The recommended formulae for

the calculation of this factor are given in tables.

3 Revision of the Eurocode methods

After the introduction of the EN version of Eurocodes the sci-

entific community had the opportunity to get to know and revise

the given methods through the translation works and determina-

tion of the National Annexes. In a short time during this imple-

mentation phase the design of steel members against LT buck-

ling became one of the most controversial parts of the standards.

Up to now, several theses have been published which draw at-

tention to the problems and open questions regarding the given

design procedures for this structural behavior. Some of these

observations:

• compared the numerical LT buckling curves as the results

of geometrically and materially nonlinear imperfect (GMNI)

analyses with the curves given in EC3-1-1 more or less large

differences can be found between them; occasionally, the

standard curves are on the unsafe side [6];

• using the ‘General Case’ method, it seems to be disadvan-

tageous solution to take into consideration the type of the

bending moment distribution only through the determination

of the slenderness; this means that the effect of the plastic

zone reduction belonging to different configurations is quite

neglected which causes relevant underestimation of the LT

buckling resistance;

• based on detailed examinations the appropriateness of the

present grouping of profiles is questionable; namely, the sep-

aration of the cross-sections purely based on the height/width

(h / b) ratio which does not properly represent the different

behaviors [7];

• some theses focus on the requirement of the harmonization

of design rules; however, the theoretical basis of the design

methods for LT buckling does not fit properly to the princi-

ples of other stability problems (e. g. the flexural buckling of

columns) [4], [8].

3.1 Evaluation of the Eurocode resistance model for LT

buckling

The appropriateness and accuracy of the resistance model for

LT buckling is evaluated in the [6] paper of Simões da Silva et al.

For the examinations numerical LT buckling curves belonging

to beams with 3 chosen profiles, different load distributions and

boundary conditions were determined. These resistances were

the results of GMNI calculations and they were compared with

standard resistances from the two alternative methods. The main

points of the summary of the evaluation [6]:

• The resistances calculated with the ‘General Case’ method

are clearly on the safe side but they are generally over-

conservative for non-uniform bending moment diagrams. It

is important to emphasize that quality of a design method re-

lies essentially on the low variance of its results. Based on

the examinations it can be stated that the differences between

the resistances of the ‘General Case’ procedure and numer-

ical calculations show a high scatter. With this significant

variance the uniform safety level cannot be guaranteed on the

whole practical range despite the correction of the mean value

with γRd safety factor.

• Large number of the resistances calculated with the ‘Special

Case’ method are on the unsafe side. However, the differences

of the standard and numerical results show much lower vari-

ance than in the case of the ‘General Case’ procedure. Based

on the findings of the examination the ‘Special Case’ proce-

dure cannot be considered safe enough.

To solve the above problems the authors give a recommen-

dation with the “union” of the two alternative design methods.

According that, their proposal is to apply the ‘Special Case’

procedure with the f factor for taking into account the effect

of the bending moment distribution of the beam. But, with

λLT,0 = 0, 2 and β = 1 values and the same buckling curves

as for the ‘General Case’. (Basically, this means the use of the

‘General Case’ method with f factor.) It has to be noted, that

this methodology is already adopted by the Portuguese National

Annex [6].

3.2 The theoretical background of the LT buckling check

Most of the publications dealing with the standard design

methods for LT buckling of beams point on a theoretical con-

tradiction as the most important problem. This contradiction

arises from that the standard procedures use the flexural buck-

ling curves for the calculation of the LT buckling resistances

instead of the clarification of the theoretical background of this

behavior. This means that the determination procedure of the LT

buckling resistance uses the column buckling curves whose the-

oretical, Ayrton-Perry type formulae are derived for the flexural

buckling behavior.

The essence of the Ayrton-Perry formula is that it defines the

load intensity which belongs to the first yield of the member at
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the most compressed fiber. The starting condition of the deter-

mination of this formula is that the elastic member has geomet-

ric imperfection. In this way, the Ayrton-Perry formula does not

take into account the possibility of plastic behavior and it ne-

glects the effect of the residual stresses. Notwithstanding, this

formula is a very popular model for the standard definition of the

buckling resistances of steel members. These standards benefit

from the simplicity and flexibility, but most of all from the clear

mechanical background of this model. For the case of simple

columns the formulae and their theoretical bases are properly

determined. And, with a simple calibration of their chosen de-

sign parameters these equations are proved to be appropriate for

the description of the flexural buckling curves based on test re-

sults.

In contrast with the compressed columns the mechanical

background of the beams under bending was not described, the

determination of the formulae for the LT buckling behavior was

not solved. Recognizing this need Szalai and Papp give a pos-

sible solution of the Ayrton-Perry type description in [4]. The

derived formulae are valid for the LT buckling of simple beams

with I profiles. In [4] the authors introduce the Ayrton-Perry for-

mula in a form appropriate for the basic equations of a new stan-

dard design method. As it was stated above, the main problem

of the determination arose from the complexity of the LT buck-

ling behavior. Namely, that it contains two kinds of deformation

components: lateral deflection (v) and rotation (ϕ). According

to Szalai and Papp, the key component of the determination is

the choice of the proper condition for the initial geometry. In

[4] it is proved that if the geometric imperfection of the exam-

ined member is chosen to be identical to the first eigenshape

of the examined member the determination of the Ayrton-Perry

formula becomes possible. This means that the condition for the

ratio of the amplitudes of initial lateral deflection (v0) and initial

rotation (ϕ0) is:

v0

ϕ0

=
Mcr

Ncr,z
(9)

where Ncr,z is the elastic critical normal force belonging to the

weak axis flexural buckling. After using this condition for the

initial geometry of the simple beams the next step is the creation

of the first yield criteria for the most compressed fiber at the

middle of the beam.

According to Fig. 1, this criteria for prismatic beams with I

profiles, end-fork boundary conditions and loaded by uniform

major axis bending moment can be written in the following

form:

My

Wel,y
+

MII
z

Wel,z
+

BII

Wel,ω
= fy (10)

In Eq. (10) Wel,y, Wel,z and Wel,ω are the elastic major axis,

minor axis and warping sectional modules of the cross-section

respectively, My is the loading major axis bending moment, MII
z

and BII are the second order minor axis bending moment and

bimoment from the deformations of the beam.

The second order internal forces can be written as the func-

tion of the loading bending moment and the displacement com-

ponents. With the introduction of the λLT slenderness and the

χLT reduction factor for LT buckling:

λ̄LT =

√
Wy· fy

Mcr
and χLT =

My

Wy· fy
(11)

after the transformations of the initial equation the second or-

der form of the generalized Ayrton-Perry formula for LT buck-

ling can be determined:

χLT + χLT · ηLT ·
1

1 − χLT · λ̄
2
LT

= 1 (12)

where the ηLT imperfection factor:

ηLT = v0 ·
Wel,y

Wel,ω
+ ϕ0 ·

Wel,y

Wel,z
− ϕ0 ·

G · It

Mcr

·
Wel,y

Wel,ω
(13)

In the equations G is the shear modulus of the material and

It is the inertia for St. Venant torsional stiffness. The Ayrton-

Perry formula written by Eq. (12) has the form similar to the

solution of the column buckling stability problem. This proves

the accuracy of the new formula for the description of the LT

buckling behavior taking into account the new meaning of the

imperfection factor. Solving the determined equations the LT

buckling curves can be written in the well-known form of EC3-

1-1:

χLT =
1

φLT +

√
φ2

LT
− λ̄2

LT

(14)

where

φLT = 0, 5 ·
[
1 + ηLT + λ̄2

LT

]
(15)

This is the fundamental solution of the Ayrton-Perry formula

based LT buckling curves which belongs to the first yield criteria

and specifically chosen initial geometric imperfection. Never-

theless, these formulae detailed in [4] are not appropriate for de-

sign purposes in practice because they do not take into account

the plastic behavior of the material and the effect of the residual

stresses from manufacturing procedures. These formulae give

appropriate basis for the development of a new standard proce-

dure for LT buckling but a comprehensive probabilistic calibra-

tion is still needed. The main results of the research in [4] are

the mathematical determination of the generalized Ayrton-Perry

formula and the description of the mechanical background of the

LT buckling behavior.

3.3 New proposal based on equivalent geometric imperfec-

tion

According to Naumes et al. the common definition of equiv-

alent geometric imperfections could be the solution to harmo-

nizing the standard procedures for the stability design of steel
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Fig. 1. Basic model for the determination of the Ayrton-Perry formula for LT buckling [12]

structural members [8]. The equivalent out-of-plane geometric

imperfection which can represent all the effects of 2any geo-

metric or material imperfections itself has to be defined with its

shape, direction and amplitude as well.

The shape of the equivalent geometric imperfection has to be

chosen identical to the critical flexural buckling or LT buck-

ling mode which belongs to the lowest positive value of elas-

tic critical load multiplication factors of the examined member.

This equivalent initial geometry for the case of simple, prismatic

columns under uniform compression is given in EC3-1-1 Part

5.3.2 (11). In this case the equivalent geometric imperfection

(ηinit) which can be described by the critical buckling mode be-

longing to the flexural buckling behavior:

ηinit =

[
e0 ·

αcr · NE(x)

E · I(x) · η
′′

crit
(x)

]
x=xd

· ηcrit(x) (16)

where ηcrit is the first eigenshape belonging to the flexural

buckling, αcr is the appropriate critical load amplifier, I(x) and

NE(x) are the function of the cross-sectional inertia and the di-

agram of the loading normal force along the member length re-

spectively, x is the coordinate along the length, xd is that cross-

sectional coordinate where the in-plane loads and out-of-plane

imperfections produce the maximum effect together, and e0 is

the amplitude of the equivalent geometric imperfection which

is given in standards. The xd location is usually called critical

cross-section or design location which belongs to the maximum

displacement of the eigenshape in the case of simple columns.

Taking into account the amplitude of the equivalent geomet-

ric imperfection (e0), the normal force (NE) and the first-order

bending moment (NE · e0) the second order bending moment

can be calculated. With these the utilization of the critical cross-

section can be determined which is appropriate for the evalua-

tion of the resistance of the whole examined member. The resis-

tance of the column meets with the requirements when:

1 ≥
NE

NR

+
NE · e0

MR

·
1

1 − NE

Ncr

(17)

In Eq. (17) NR and MR are the cross-sectional normal force

and bending moment resistances respectively.

The authors propose a solution also for the determination of

the LT buckling resistance of beams, similarly as in the case

of columns. The proposed equivalent geometric imperfection is

based on a derivation procedure analogous to the case of simple

columns. The LT buckling type first eigenshape of simple beams

and therefore the equivalent initial shape as well can be char-

acterized by the lateral deflection (ηcrit) and the rotation (ϕcrit)

components, see Fig. 2.

Fig. 2. The deformation components of LT buckling

This solution detailed in [8] handles the LT buckling behav-

ior as the flexural buckling of the upper flange. This approach

has a great benefit. Namely, the behavior of the members in

bending can be converted into the flexural buckling of columns.

Therefore, through the determined “column-like” formulae the

standard parameters given for the case of simple columns can be

applied for beams also. With these initial conditions the equiva-

lent geometric imperfection for the LT buckling behavior can be

written in the following form for the most utilized upper flange:

ηinit,Fl =

e∗0 · αcr · NE,Fl(x)

E · IFl ·
(
η
′′

crit
+ zM,Fl · ϕ

′′

crit

) 
x=xd

·

·
(
ηcrit + zM,Fl · ϕcrit

) (18)

where ηcrit,Fl = ηcrit + zM,Fl · ϕcrit is the total lateral deflection

of the examined upper flange due to the LT buckling. According

to the initial conditions, in this case the amplitude of the equiva-

lent geometric imperfection (e∗
0
) can be written in a form similar

to the simple column case:

e∗0 =
MR,Fl

NR,Fl

· α∗ ·
(
λ̄ − 0, 2

)
(19)

In Eq. (19) MR,Fl and NR,Fl are the characteristic values of the

resistances of the critical compression flange to weak axis bend-

ing moment and normal force respectively, λ is the slenderness

of the member, and α∗ can be calculated from the α imperfection
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constant whose values are given in standards based on column

buckling tests:

α∗ =
α∗

crit

αcrit

· α (20)

This reduction of the α imperfection constant makes it possi-

ble that the standard values of α belonging to the column buck-

ling case can be applied for the LT buckling behavior also. The

modification means nothing more than making the LT buckling

behavior “column-like” through the neglect of the St. Venant

torsional stiffness of the structural member. In Eq. (20) αcrit and

α∗
crit

are the critical load amplifiers with and without taking into

account the It torsional stiffness. The authors provide a diagram

in [9] to help the calculation of this reduced α∗ constant.

The above formulae can be applied through practical design

only when the xd location of the critical (or design) cross-section

is known. Namely, the resistance of the structural member has

to be evaluated at the x = xd design point. However, this critical

cross-section is generally unknown. Therefore, the authors pro-

pose equations for the determination of the xd location which are

based on the results of numerical simulations and are given in a

tabular form. Creating the condition for the resistance evalua-

tion of the critical compressed flange at x = xd which is known

by now:

1 ≥
NE,Fl

NR,Fl

+
ME,Fl

MR,Fl

(21)

After modifying the initial equations the formulae for the def-

inition of the stability curves can be determined in the well-

known form of the standards. Then, the χ reduction factor is:

χ =
1

φ +
√
φ2 − λ̄2

≤ 1, 0 (22)

where

φ = 0, 5 ·
[
1 + α∗ ·

(
λ̄ − 0, 2

)
+ λ̄2

]
(23)

In the formulae α∗ marks the imperfection constant for the

“column-like” LT buckling, and λ describes the slenderness be-

longing to the design location:

λ̄(xd) =

√
αult,k(xd)

αcrit

(24)

So, after the determination of the χ reduction factor the sta-

bility resistance of the examined structural member can be eval-

uated. In this case the requirement:

γM1

χ · αult,k(xd)
≤ 1, 0 (25)

where αult,k(xd) is the multiplication factor for the compres-

sion force in the relevant flange to reach the characteristic value

of the resistance.

Using the above formulae we have a design method for the

case of beams under pure bending. It has to be noted that the

theoretical basis of the introduced method is identical with the

Ayrton-Perry type solution detailed in Section 3.2. Namely, the

transformation of the formulae applied here leads to the same

equations for the case of simple beams. To determine a design

method from this theoretical basis the authors chose the solu-

tion to handle the LT buckling behavior as the flexural buckling

of the compressed upper flange. Thus, the equations of EC3-1-1

as the results of previous calibration process can be applied for

the calculation of the imperfection factor. So, a design method

for the case of simple beams is given. For the extension of this

method for the case of beams with various boundary conditions

and load distributions the chosen solution is the methodology

based on the design cross-section. For the determination of this

location and then for the evaluation according to this design

point the authors propose the above formulae.

3.4 New LT buckling curves for beams under pure bending

To solve the problems of the standard design methods for LT

buckling Greiner and Taras found it necessary to develop a new

procedure which is appropriate for code amendments. Through

the evaluation of the current rules they established that the ap-

plied mechanical background does not describe properly the LT

buckling behavior of beams. Therefore, the authors determined

the correct description of this stability problem which is able to

avoid the previous contradictions in the EC3-1-1. Similarly to

Szalai and Papp, they also chose the Ayrton-Perry type solution

as a proper basis for the new design method. Actually, Greiner

and Taras in [7] give a determination procedure similar to the

solution in [4] and as the final result they introduce the same

Ayrton-Perry formula shown in Eq. 12. The difference in this

new solution can be found in the description of certain parame-

ters. With these definitions and simplifications the authors give

the imperfection factor belonging to the LT buckling behavior in

the following form [7]:

ηLT =
A · e0

Wel,z
·
λ2

LT

λ2
z

(26)

where e0 = v0 + ϕ0 · h / 2 is the total lateral deflection of

the most utilized fiber, i.e. the maximal displacement of the

member. Nevertheless, the ηLT factor in this theoretical form

is inappropriate for design procedures because of the neglect of

several effects (e.g. the plastic behavior and residual stresses).

Therefore, the authors carried out a comprehensive calibration

procedure based on the results of numerous GMNI analysis. Fi-

nally, the proposed, calibrated expression for the calculation of

the imperfection factor is:

ηLT = αLT ·
(
λ̄z − 0, 2

)
·
λ̄2

LT

λ̄2
z

(27)

For this calculation the numerically determined values of αLT

imperfection constant for hot-rolled and welded I profiles are

given in [11].
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According to Taras’ examinations it can be stated that the

present standard procedures with this new definition of the im-

perfection factor can properly follow the behavior of beams with

uniform bending moment distribution. So, the calculated resis-

tances are in good agreement with the numerical results [10].

However, when the load distribution of the beam is changed

(e.g. to linear moment diagram or distributed loading) the given

formulae cannot describe appropriately the numerically deter-

mined behavior. For these cases, Taras proposes the application

of a new, additional design parameter which is marked with ϕ

and its value is called “over-strength” factor in [10]. Essentially,

this new factor helps to characterize the bending moment dis-

tribution and to take into account the differences between the

LT buckling curves belonging to the different load distributions.

For the calculation of this new parameter Taras proposes such

equations which are fitted to numerical results. These equations

are given in tabular form for the different configurations in [11].

As the result of an extensive research work the proposal of a

novel design method reached completion. This proposed pro-

cedure was introduced on a TC8 session in 2012 by Taras and

Unterweger. The report about the presentation can be found in

[11]. This proposed new method aims the replacement of the

present standard procedures for the check of LT buckling. Sim-

ilarly to the current methodology, it starts with the definition of

the λLT slenderness, see in Eq. (4). After determining this slen-

derness, based on the above parameter definitions and formulae

the χLT reduction factor for LT buckling can be calculated:

χLT =
ϕ

φLT +

√
φ2

LT
− ϕ · λ̄2

LT

≤ 1, 0 (28)

where

ϕLT = 0, 5 ·

1 + ϕ ·

 λ̄2
LT

λ̄2
z

αLT ·
(
λ̄z − 0, 2

)
+ λ̄2

LT

 (29)

In the above equations the αLT imperfection constant and the

ϕ “over-strength” factor can be determined according to [11].

Finally, knowing the value of the reduction factor the LT buck-

ling resistance of the examined structural member can be calcu-

lated:

Mb,Rd = χLT ·Wpl,y · fy/γM1 (30)

In summary, the code amendment of Taras et al. is based on

the Ayrton-Perry formula determined for the LT buckling behav-

ior. To have a design procedure for the case of simple beams the

authors give a calibrated expression for the calculation of the

imperfection factor. Using this proposal with the formulae from

the Ayrton-Perry type solution we have a simple calculation pro-

cedure to determine the LT buckling resistances. To extend this

method for a wide range of beam configurations the authors give

additional factors based on the results of numerical simulations.

It has to be stated that this proposed method follow properly the

stability behavior of the beams subjected to pure bending thanks

to the appropriate mechanical background and the comprehen-

sive calibration procedure.

4 New design method for LT buckling of beams

As it was mentioned above, through the revision of the Eu-

rocode methods for LT buckling the scientific community drew

attention to several problems and open questions. Maybe the

most important statement is that the theoretical basis of these

given procedures is not acceptable because the mechanical back-

ground of the stability behavior of members subjected to bend-

ing is not clarified. Perhaps, this is the reason why the LT

buckling curves defined by the standard methods cannot prop-

erly follow the experimental and numerical results. Therefore,

the given procedures in EC3-1-1 do not describe appropriately

the LT buckling behavior of beams. Realizing these problems,

some researches are dealing with the development of a proper

design methodology for the determination of the LT buckling

resistance.

In this paper, two new proposals are introduced for the de-

termination of the LT buckling resistance of members. Both of

them are based on an Ayrton-Perry type theoretical solution but

they use different adaptations. The above detailed proposal of

Naumes et al. applies a basic method for simple beams with

the calibration of the imperfection factor. Here, the LT buckling

behavior is handled as the flexural buckling of the compressed

upper flange. The extension of this procedure is based on the

knowledge of the xd design location where the authors give nu-

merically confirmed equations for its determination. However,

the presentation of the widespread validation for this method is

still needed. The secondly detailed proposal from Taras et al.

also uses the Ayrton-Perry formulae with a calibrated equation

for the imperfection factor. But, for the extension of this basic

method it requires additional factors fitted to numerical results

to be able to follow the behavior of different beam configura-

tions. Nevertheless, the physical explanation of these factors is

not complete or perfectly clarified. At the same time, the mod-

ern intentions focus on the development of such methods which

are suitable to be applied in computer aided design procedures.

However, this kind of utilization of the above mentioned proce-

dures has some difficulties through the tabular definition of the

parameters.

Following the modern intentions, we started a new research

on the development of a general type stability design methodol-

ogy for beams which is appropriate for computer-aided design

work also. For the theoretical basis of this new procedure we

chose the generalized Ayrton-Perry formula detailed in Section

3.2 which is determined for the LT buckling behavior of beams

under bending. To determine an appropriate design method for

the case of simple beams a calibration procedure was carried

out. As the result, contrary to the above detailed proposals we

give a calibrated expression for the measure of the imperfec-

tion instead of the imperfection factor. This makes possible the
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more accurate description of the LT buckling behavior. Tak-

ing into account the calibrated equation and using the above de-

tailed Ayrton-Perry formulae an appropriate design method is

given for the simple beams. The calibration process and this

new proposal for design procedure is detailed in Section 4.1.

The numerical model used for the determination of LT buckling

resistances of beams needed to the evaluations is introduced in

Section 4.2. To extend the proposed basic procedure for differ-

ent beam configurations our idea was to use such methodology

where the stability check of the structural members is reduced

to the evaluation of specific cross-sections. This makes possible

the general application of the method. The appropriateness and

applicability of this new proposal has been verified for prismatic

beams under pure bending. This new segmental methodology as

well as the details of the determination and application are in-

troduced in Section 4.3.

4.1 New design method for simple beams

As it is mentioned above, the theoretical basis of the new

design method is the generalized Ayrton-Perry formula deter-

mined for simple beams. However, these equations in the form

introduced in [4] are not appropriate for the determination of

the resistances of beams. The reason is that the formulae de-

fine the load-carrying capacity equal to the first yield of the

member and do not take into account several effects, e.g. the

plastic behavior of the beam and the effect of residual stresses.

To make these theoretical equations applicable for the design of

simple beams we started the development of the new method

with widespread deterministic calibration of the Ayrton-Perry

type formulae. Henceforward, the prismatic beams with I pro-

files, end-fork boundary conditions, loaded by uniform bending

moment distribution (which is the basic model of the theoretical

determination) are called reference models.

The database needed for the deterministic calibration is cre-

ated by the results of GMNI analyses carried out in ANSYS

software using the numerical model detailed in Section 4.2. For

the numerical test program 20 hot-rolled I profiles were chosen

where each of them belongs to the compact sections of class 1

or 2. With the chosen profiles 7 different long beams were mod-

eled where the L member lengths were determined belonging

to discrete values of λz relative slenderness for weak axis flex-

ural buckling. In the test program, to take into account an ap-

propriately wide variation of the behavior the values of λz were

defined in the range of 0,3 - 3,0. The material grade of the mem-

bers was S235, with yield strength 235 N/mm2. As the result of

the numerical tests the LT buckling resistances of 140 reference

model beams were determined.

The final results of the GMNI analyses were the Mb,Rd LT

buckling resistances of the tested beams. From these values, us-

ing Eq. (11), (14) and (15) the ηLT imperfection factors were

calculated. Then, based on Eq. (9) and (13) the v0 amplitudes of

the lateral deflections were determined. It is important to note

that the cross-sectional properties in the above formulae were

Fig. 3. Comparison of the numerical results to standard a - imperfection fac-

tors and b - LT buckling curves

calculated belonging to the plastic behavior allowed for cross-

sectional class 1 and 2. At first, it was investigated how the

application of a linear function of the λLT slenderness for ηLT

imperfection factor affects the final results. This is how it hap-

pens in EC3-1-1. For this investigation the calculated ηLT values

were grouped based on the cross-sectional geometry according

to the Eurocode rules, as it is shown in Fig. 3. In diagrams

of the hot-rolled profiles with h/b > 2 it can be seen that the

numerical results show various behavior. So, substituting the

got curves with one linear relation would cause relevant neglect.

This can be observed by the comparison of the numerical re-

sults to the calculated standard LT buckling curves also. The

resistance curve given by EC3-1-1 does not fit properly to the

behavior of the different profiles.

Evaluating the possible ways of the calibration it was stated

that the determined form of the imperfection factor in Eq. (13)

carries such a real physical meaning which gives the opportu-

nity to follow uniquely the behavior of each cross-sections. So,

this determined formula has a very important benefit regarding

the novel method which has to be taken into account. Therefore,

through the calibration procedure the definition of the imper-

fection factor was left in the original form and the imperfection

amplitudes in it were chosen as the basic of the calibration. Ac-

cording to the results of examination the L / vFl (member length

/ total lateral deflection of the midpoint of upper flange) ratios
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proved to be most appropriate for the determination of the cali-

bration equation. The vFl = v0 + h / 2 · ϕ0 values which charac-

terize the measure of the imperfection were calculated from the

numerical resistances. These results were plotted in diagrams

over the slenderness for LT buckling, shown in Fig. 4.

Fig. 4. L / vFl values and the calibrated curve for hot rolled profiles

For the results collected in the above diagram a bottom cover-

ing curve was fitted (shown with black solid line). Through the

determination of this curve the main aspect was to ensure the

accurate enough fit on the practical slenderness range. To this,

the choice of a nonlinear function became reasonable for the

members with λLT < 1, 0. In the range of higher slenderness a

constant value is proposed for L / vFl ratios. It has to be noted

for this constant value, that the difference between the numerical

values and the calibrated curve does not cause significant errors.

Finally, the proposed, calibrated formula for the calculation of

the L / vFl ratios of hot-rolled profiles:

L

vFl

=

 500 · (λ̄LT − 1, 0)2 + 320 if λ̄LT < 1, 0

320 if λ̄LT ≥ 1, 0
(31)

Using the above introduced, calibrated equation and apply-

ing the Ayrton-Perry based formulae written by Eq. (9) and

(13), (14), (15) we have a new method for the determination

of the LT buckling resistance of beams belonging to the refer-

ence model. The method has benefits from the simple, clear

theoretical background which is determined for the LT buck-

ling behavior. Furthermore, a very important advantage arises

from the application of the theoretical form of imperfection fac-

tor through taking into account its physical meaning. Therefore,

it makes possible to properly follow the different behaviors of

the profiles through unique LT buckling curves depending on

the cross-sectional properties. For the results of the new method

Fig. 5 shows an example. In this diagram the GMNIA results

(solid lines) are also drawn to be able to evaluate of the appropri-

ateness and accuracy of the curves calculated with the proposed

procedure (dashed lines).

Fig. 5. Numerical and calculated LT buckling curves for hot rolled profiles

4.2 The numerical model

For the development of the new design method for beams nu-

merical LT buckling resistance values were taken into consider-

ation. These load carrying capacities of steel members subjected

to bending with different load distributions and boundary condi-

tions were determined by GMNI analyses of shell finite element

models carried out in ANSYS software. The model of mem-

bers were constructed with 4-node, SHELL181 type finite strain

shell elements, which can model the nonlinear behavior. The

material behavior of the beams was modeled with linear elastic-

ideally plastic material model with E = 210 GPa Young-modulus

and yield criterion belonging to the standard yield strength of the

material grade.

In the following of this paper the case of beams with hot-

rolled, I-shaped profiles is examined and detailed. These kinds

of sections were modeled with simplified cross-section where

the web-to-flange zone received specific treatment. Through the

shell finite element modeling of the profiles this region includes

an overlap of material and disregards the so-called "flange ra-

dius" areas. In order to get closer to the real characteristics of

such steel cross-sections the finite elements of the web at the

web-to-flange zones are modified, see in Fig. 6. To determine

the two parameters: height and width of these elements two

special conditions were used. First, the cross-sectional area of

the special element has to be equal to that of the radius zones

plus the substituted web section (substituted section) area. The

other condition is that the center of gravity of this element within

the web height has to be at the exact vertical position of the

centroid of the radius zone. Using these conditions the height

and the width of the special finite element can be determined.

With this construction the profiles whose "radius zones minus

the overlapped" area becomes negative (typically the HEM pro-

files) also can be handled, through the definition of an element

whose thickness is lower than the webs.

The steel members were modeled with special cross-sections

at the ends for the application of the boundary conditions. In

this construction every node of the two end cross-sections were

connected to a master node, see in Fig. 6. This made possible
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Fig. 6. FE model of beams

the specification of the boundary conditions of warp and dif-

ferent types of supports on one node, and at the same time the

avoidance of the numerical errors arising from the concentrated

conditions. The bending moment type loads of beams were de-

fined in form of stresses on the lines of end-sections.

The model of the members was defined with geometric and

material imperfections. The imperfect geometry of the beams

was affine to the first eigenshape of the beams under uniform

bending. The amplitude of the geometric imperfection was de-

fined with L / 1000 value for the maximum lateral displacement

of the midpoint of upper flange. The material imperfection was

modeled by triangular residual stress distribution, see in Fig. 7.

The amplitude of the stresses was defined by the specification of

the maximum compression stress at the top of the flanges.

Fig. 7. Residual stress model

4.3 New design method for LT buckling of various beam

configurations

In Section 4.1 a new design method was introduced for the de-

termination of the LT buckling resistance of beams belonging to

the reference model. Using its theory and calibrated expressions

we started to develop a general type procedure. The generality

here means that the same methodology can be applied for the

determination of the resistances of beams with arbitrary bound-

ary conditions and load distributions. Before the development

of this new method preliminary examinations were carried out

to compare and evaluate the behavior of different beam config-

urations. To this, the results of GMNI analyses of the above

detailed ANSYS model were taken into account.

For the examinations a widespread numerical test program

was carried out on beams under bending with different bound-

ary conditions and load distributions. The 20 hot-rolled profiles

used for the reference model were chosen here also. The exam-

ined configurations were built with:

- end-fork (without or with prevented end-warp) or clamped

boundary conditions and

- linear bending moment distribution with the end-moment

ratios from ψ= 1 to ψ= -1 (ψ= 1; 0,75; 0,5; 0,25; 0; -0,25; -0,5;

-0,75 and -1) or uniform load distribution.

Combining these alternatives the LT buckling resistances of

beams with different lengths were determined. The member

lengths were defined belonging to specific values of λz relative

slenderness which were chosen from the range of: λz = 0,3 - 3,6.

The material grade of the tested members was S235, with yield

strength 235 N/mm2. From the given LT buckling resistances the

reduction factors for LT buckling were calculated using the def-

inition in Eq. (11). For these results some examples can be seen

in Fig. 8. In the diagrams the numerical LT buckling curves are

shown for beams with different configurations.

Fig. 8. Numerical LT buckling curves for beams with different configura-

tions

In Fig. 8a the LT buckling curves of symmetric distributions

are drawn. According to the diagram it can be stated that the

indicated behaviors are quite similar. Namely, these LT buck-

ling curves are very close to each other. The differences be-
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tween them are caused by the variance of the plastic zones of

the examined beams which arises from the bending moment di-

agrams. However, if the load distribution or the boundary con-

ditions are changed asymmetrically we get significantly differ-

ent behaviors. In Fig. 8b some examples can be seen for this

variance of the LT buckling curves belonging to different beam

configurations.

Comparing our examinational results to the statements of

Naumes et al. we came to the conclusion that the main reason of

the differences between the behaviors arise from the variance of

the critical (design) location of xd. In the case of symmetric con-

figurations definitely the cross-section belonging to the middle

of the member length (xd = L / 2) is the critical. Because, tak-

ing into account the bending moment distribution and the buck-

led shape (the eigenshape) their total effect has its maximum at

this location, see Fig. 9a. (Except that for very short beams with

clamped ends the xd = 0 end-sections can be the critical through

the very large bending moments.) However, in the case of asym-

metric configurations this critical cross-section shifts from the

middle. E.g. for a beam with end-fork boundary conditions and

loaded at one of its ends (i.e. it has a triangular moment distri-

bution) this design location does not belong neither to the max-

imum bending moment nor the amplitude of the buckled shape.

It is somewhere between these two specific cross-section, see in

Fig. 9b.

Fig. 9. The demonstration of the xd design location for a - symmetric and b

- asymmetric beam [12]

To develop an optimal design procedure, the resistance of the

beam has to be evaluated at the design cross-section. For the de-

termination of this location the proposed procedure of Naumes

et al. detailed in [8] can be applied. Nevertheless, that method

gives solution only for a limited number of specific configura-

tion and its parameters are defined by numerical results in a tab-

ular form. Therefore, it cannot be applied generally for arbi-

trary conditions and it is difficult to use in computer-aided de-

sign work through the tabular definitions. Using the basic idea

of Naumes et al. we developed a practical application of his

method. This means, that our new, general type procedure is

able to find the design location and it determines the LT buck-

ling resistance of the examined beam belonging to this critical

cross-section.

The basic idea here for the determination of the design cross-

section is the use of a segmental type methodology. Accord-

ing that, at the first step of the procedure the examined mem-

ber is divided into an appropriate number of segments of equal

length and each cross-section specified by the division is evalu-

ated. Then, as the result of the complete evaluation the critical

location can be chosen and according to this cross-section the

resistance of the member can be calculated. The basis of the

cross-sectional evaluation is the following definition of the slen-

derness:

λ̄LT,i =

√
αult,i

αcr

=

√
Wpl,y · fy/My,Ed,i

αcr

(32)

where αcr is the minimum load amplifier to reach the elastic

critical bending moment resistance of the member, My,Ed,i is the

bending moment in the i-th cross-section, therefore, αult,i is the

minimum load amplifier to reach the characteristic resistance at

the i-th cross-section. With the above definition the meaning of

the slenderness can be generalized. Therefore, in this form it

does not belong merely to the geometrical characteristic of the

whole member. With the Eq. (32) definition the slenderness is

interpretable for the cross-sections based on their utilization.

After dividing the member and defining the cross-sectional

slenderness values the final aim of the calculation methodology

is to find the critical cross-section. As it was mentioned be-

fore, this cross-section belongs to that location where the bend-

ing moment distribution and the buckled shape have together the

maximum cross-sectional utilization. To find this cross-section

we utilized the Ayrton-Perry formula based method which was

detailed in the previous section for the case of the reference

model. If the cross-sectional slenderness defined by Eq. (32) is

interpreted as the slenderness of an equivalent reference model

member for this virtual beam the χLT reduction factor can be

calculated by the Ayrton-Perry formula based method. (i.e. the

equivalent members are simple beams whose slenderness value

is identical to the given cross-sectional slenderness, see Part 1

in Fig. 10.)

In that case, when the Ayrton-Perry formula based method is

carried out separately for each evaluated cross-sections it is not

taken into account that these cross-sections belong to a “global”

behavior, to the whole examined member. Therefore, through

the procedure they have to be “connected”. To this, the ηLT,eq,i

values determined for the chosen cross-sections through the cal-

culation methodology are normalized with vi / vmax ratios where
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vi is the lateral deflection of the i-th cross-section and vmax is the

amplitude of the buckled shape.

This weighting is based on the typical LT buckling shape, i.e.

the eigenshape of the member, see Part 2 in Fig. 10. For these

modified values of the ηLT,i imperfection factor the χLT,i reduc-

tion factors can be calculated by the further steps of the Ayrton-

Perry formula based methodology. According to the determined

values of the reduction factor a LT buckling resistance can be

calculated for each chosen cross-sections in the following way:

Mb,Rd,i = αult,i ·
χLT,i

γM1

· My,Ed =
Wpl,y · fy

My,Ed,i
·
χLT,i

γM1

· My,Ed =

= Wpl,y · fy ·
χLT,i

γM1

·
My,Ed

My,Ed,i

(33)

Choosing the minimum value of these load carrying capaci-

ties we get the LT buckling resistance of the examined member,

see Part 3 in Fig. 10. And finally, the cross-section which the

minimal resistance belongs to that is the critical cross-section

(design location).

4.4 The calculation methodology of the new design proce-

dure

As it was written previously and according to the Fig. 10 the

main steps of the cross-sectional evaluation according to the new

design method:

1 The geometrical properties, boundary conditions and load

distribution of the examined beam are known.

2 The αcr multiplication factor has to be determined divid-

ing the Mcr elastic critical bending moment of the examined

member by the My,Ed,max maximal value of the loading bend-

ing moment. This αcr is valid (one value) for the whole mem-

ber.

3 The examined member has to be divided into the appropriate

number of segments. In our examinations the beams were

divided into 20 segments. This meant the evaluation of 21

specific cross-sections.

4 The αult,i multiplication factors have to be determined for each

specific cross-section dividing the Mc,Rk characteristic cross-

sectional bending resistance by the My,Ed,i cross-sectional

bending moment load. So, the load distribution of the beam

is taken into account.

5 Based on the αcr and αult,i factors the λLT,i

6 slenderness values can be determined for each chosen cross-

section. According to these slenderness values an equivalent,

virtual reference member has to be defined for each examined

cross-sections which has the same slenderness value.

7 Using the calibrated Eq. (31) with Eq. (9) and Eq. (13) the

ηLT,eq,i generalized imperfection factors have to be calcu-

lated for the virtual members belonging to the specific cross-

sections.

8 Based on the lateral-torsional buckling type eigenshape of the

member the vmax maximal and vi cross-sectional lateral dis-

placements can be calculated. Using the vi/vmax weights the

effect of the eigenshape is taken into account.

9 Multiplied the ηLT,eq,i cross-sectional values with the vi / vmax

weights, through Eq. (15) and Eq. (14) the χLT,i cross-

sectional reduction factors can be calculated.

10 Based on αult,i and χLT,i values an Mb,Rd,i LT buckling resis-

tance can be determined for each chosen cross-section using

Eq. (33).

11 Choosing the Mb,Rd,min minimum value of the LT buckling re-

sistances belonging to the cross-sections the resistance of the

examined member is got: Mb,Rd = Mb,Rd,min. Nevertheless,

the cross-section belonging to the minimum value of the re-

sistances means the critical cross-section.

4.5 Evaluation of the results of the new method

For the evaluation of the new method the LT buckling resis-

tances determined by the cross-section based calculation were

examined in different aspects. To this, the load-carrying capac-

ities of numerous beams with various configurations were cal-

culated which results were compared to the results of GMNI

analyses in ANSYS software as well as to the resistances deter-

mined by the given standard procedures. For the examinations

these different kinds of values for the given structural members

were plotted on diagrams. In the following, some of these fig-

ures are introduced and evaluated.

In Fig. 11 two diagrams are shown for the evaluation of the

accuracy of the new method. To this, the LT buckling resistances

determined by GMNI analyses (with solid lines) and calculated

by the new method (with dashed lines) are compared. Here, the

results belonging to beams with end-fork boundary conditions

are introduced for 3 different load cases:

• case ‘a’: uniformly distributed loading

• case ‘b’: linear bending moment distribution with the end-

moment ratios of ψ= 0 and

• case ‘c’: linear bending moment distribution with the end-

moment ratios of ψ= -1.

For the representation of the examined results the LT buck-

ling curves belonging to two profiles: HEB 900 and IPE 500

were chosen. In the diagrams in Fig. 11 it can be seen, that the

curves calculated by the new method follow properly the various

behaviors from the different load distribution. The two diagrams

show an example for how the new method can benefit from the

generalized form of the imperfection factor. Using the above

detailed relation unique LT buckling curves can be determined

for the different cross-sections which makes possible to follow

more properly the behavior of the various configurations.

The LT buckling curves determined by the new method were

compared to the curves belonging to the EC3-1-1 ‘General
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Fig. 10. The main steps of the new, general type segmental methodology

Case’ and ‘Special Case’ procedures. For this evaluation two

diagrams are given in Fig. 12 where these different curves are

plotted. The results are shown for two different beam configura-

tions:

• case ‘a’: beam with one hinged and one clamped end, with

HEA 450 profile, under uniformly distributed loading

• case ‘b’: beam with end-fork boundary conditions, with HEA

900 profile, under linear bending moment distribution with

the end-moment ratios of ψ= 0.

In the diagrams it can be seen that the standard LT buckling

curves do not appropriately follow the behavior of the exam-

ined beams, i.e. very large differences can be found between the

numerical and the calculated resistances. However, the new seg-

mental methodology produced curves fit much more accurately

to the real behavior. Therefore, our proposal gives the opportu-

nity for a more optimal structural design work.

5 Summary and conclusions

In this paper a new design method was described for the de-

termination of the lateral-torsional buckling resistance of simple

beams. For the basic of the new method the formulae from the

Ayrton-Perry type solution were chosen, similar to other new

proposals. The very important advantage of this new design

procedure is that it takes into account the determined physical

meaning of the imperfection factor. As the result of a calibration

process an expression was proposed for the calculation of the

geometric imperfection amplitude. Using this proposed equa-

tion and the Ayrton-Perry type formulae an appropriate method

is given for the determination of the LT buckling resistance of

simple beams. The accuracy and applicability of this calculation

procedure was demonstrated.

For the extension of this basic method for the case of var-

ious beam configurations a segmentation based methodology

was proposed where the stability problem is evaluated at the

cross-sections specified by the division. This means that the

determination of the load-carrying capacity of the members is

reduced to cross-sectional evaluation. And this gives the ad-

vantage of the new methodology. Namely, this cross-sectional

calculation makes possible to find the design cross-section and

evaluate the resistance of the beams in that location, similar to

the proposal of Naumes et al. Through the determination of

the critical cross-section the effect of the load distribution of the

beam and also the effect of the lateral-torsional buckling type

eigenshape (for the boundary conditions) is taken into account.

This made possible to create such a methodology which can ac-

curately predict the behavior of the diversely loaded and sup-

ported beams. Evaluating the results calculated with the method

and comparing them with numerical results it can be stated that

the Ayrton-Perry formula based method is properly accurate and

has several advantages.

It has to be emphasized that the segmental division and cross-

sectional evaluation based method requires long, tabular cal-

culations. And, also requires the knowledge of the eigenvalue

and eigenshape of the examined member. Therefore, our inten-

tion with this method is not the recommendation of a new man-

ual calculation process. Its advantages can be utilized through

computer-aided design procedures. Nevertheless, the cross-

sectional evaluation method with the definition of the cross-

sectional slenderness makes possible the examination of more
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Fig. 11. LT buckling curves from numerical tests and segmental calculations

for HEB 900 and IPE 500 profiles

complex and difficult problems (e.g. tapered beams; complex

loading with normal force, biaxial bending etc.). So, we have

the possibility for the development of a modern, general stabil-

ity design method. This generalization is the object of further

evaluation and validation research.
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